3.8 Proceedings Paper

Friction in sheet metal forming: influence of surface roughness and strain rate on sheet metal forming simulation results

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.promfg.2019.02.169

关键词

Sheet Metal Forming Simulations; Material modeling; Friction modeling; Tribology

向作者/读者索取更多资源

The quality of sheet metal formed parts is strongly dependent on the tribology and friction conditions that are acting in the actual forming process. These friction conditions are then dependent on the tribology system, i.e. the applied sheet material, coating and tooling material, the lubrication and process conditions. Although friction is of key importance, it is currently not considered in detail in sheet metal forming simulations. The current industrial standard is to use a constant (Coulomb) coefficient of friction, which limits the overall simulation accuracy. Since a few years, back there is an ongoing collaboration on friction modelling between Volvo Cars, Tata Steel, TriboForm Engineering, AutoForm Engineering and the University of Twente. In previous papers by the authors, results from lab scale studies and studies of body parts at Volvo Cars, both parts in early tryout for new car models as well as parts in production have been presented. However, the introduction of a new friction model in the sheet metal forming simulations forces the user to gain knowledge about accurate values for new input parameters and question current modeling assumptions. This paper presents results from studies on the influence on the sheet metal forming simulation results from stamping die surface roughness and introduction of strain rate sensitivity in the sheet material model. The study will use a FE-model of a part presented in previous papers. (C) 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/) Selection and peer-review under responsibility of the organizing committee of SHEMET 2019.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据