4.7 Article

Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice

期刊

JOURNAL OF EXPERIMENTAL BOTANY
卷 69, 期 5, 页码 1051-1064

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jxb/erx458

关键词

Defense responses; exocyst complex; lesion-mimic phenotype; Oryza sativa; pathogenesis; salicylic acid; SEC3A

资金

  1. Ministry of Agriculture of China for Transgenic Research [2014ZX0800938B]
  2. National Program on Key Basic Research Project (973 Program) of China [2013CB126905]

向作者/读者索取更多资源

The exocyst, an evolutionarily conserved octameric protein complex involved in exocytosis, has been reported to be involved in diverse aspects of morphogenesis in Arabidopsis. However, the molecular functions of such exocytotic molecules in rice are poorly understood. Here, we examined the molecular function of OsSEC3A, an important subunit of the exocyst complex in rice. The OsSEC3A gene is expressed in various organs, and OsSEC3A has the potential ability to participate in the exocyst complex by interacting with several other exocyst subunits. Disruption of OsSEC3A by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) caused dwarf stature and a lesion-mimic phenotype. The Ossec3a mutant exhibited enhanced defense responses, as shown by up-regulated transcript levels of pathogenesis-and salicylic acid synthesis-related genes, increased levels of salicylic acid, and enhanced resistance to the fungal pathogen Magnaporthe oryzae. Subcellular localization analysis demonstrated that OsSEC3A has a punctate distribution with the plasma membrane. In addition, OsSEC3A interacted with rice SNAP25-type t-SNARE protein OsSNAP32, which is involved in rice blast resistance, via the C-terminus and bound to phosphatidylinositol lipids, particularly phosphatidylinositol-3-phosphate, through its N-terminus. These findings uncover the novel function of rice exocyst subunit SEC3 in defense responses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据