3.8 Proceedings Paper

An Intelligent Irradiance Equalization Approach based on Fuzzy Logic for Small Reconfigurable PV Architecture

出版社

IEEE
DOI: 10.1109/irsec48032.2019.9078226

关键词

partial shading; reconfigurable PV; irradiance equalization; fuzzy logic

向作者/读者索取更多资源

when the panels in a photovoltaic generator (PVG) are subjected to Partial Shading (PS), some bypass diodes may turn on, and consequently multiple peaks in the Power Voltage (P-V) characteristic are produced which reduces the output power. For an optimal GPV power extraction, one of emerging PS mitigation techniques is to reconfigure the PVG by altering the electrical connections between panels according to prevailing conditions. This paper presents a reconfigurable PV architecture based on irradiance equalization row approach for a PVG connected on Total cross tied (TCT) scheme. The proposed technique uses fuzzy logic as an optimization tool to obtain uniform shade dispersion throughout the PVG, either keeping the same number of panels in each row or forming rows with different number of PV panels. To evaluate the effectiveness of proposed fuzzy logic controller (FLC), extensive simulations with different shade patterns are carried out on Matlab/Simulink. Thorough analysis with the help of characteristics curves and the results obtained for the full PV chain conversion are performed. Results of simulation show that the proposed reconfiguration method exhibit superior results as compared to fixed TCT interconnection and enhanced irradiance equalization (IEq) method in terms of efficiency, power loss and response time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据