4.5 Article

Archer fish jumping prey capture: kinematics and hydrodynamics

期刊

JOURNAL OF EXPERIMENTAL BIOLOGY
卷 220, 期 8, 页码 1411-1422

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jeb.145623

关键词

Prey capture; Jumping; Archer fish; Rapid maneuvering; Particle image velocimetry

类别

向作者/读者索取更多资源

Smallscale archer fish, Toxotes microlepis, are best known for spitting jets of water to capture prey, but also hunt by jumping out of the water to heights of up to 2.5 body lengths. In this study, high-speed imaging and particle image velocimetry were used to characterize the kinematics and hydrodynamics of this jumping behavior. Jumping used a set of kinematics distinct from those of in-water feeding strikes and was segmented into three phases: (1) hovering to sight prey at the surface, (2) rapid upward thrust production and (3) gliding to the prey once out of the water. The number of propulsive tail strokes positively correlated with the height of the bait, as did the peak body velocity observed during a jump. During the gliding stage, the fish traveled ballistically; the kinetic energy when the fish left the water balanced with the change in potential energy from water exit to the maximum jump height. The ballistic estimate of the mechanical energy required to jump was comparable with the estimated mechanical energy requirements of spitting a jet with sufficient momentum to down prey and subsequently pursuing the prey in water. Particle image velocimetry showed that, in addition to the caudal fin, the wakes of the anal, pectoral and dorsal fins were of nontrivial strength, especially at the onset of thrust production. During jump initiation, these fins were used to produce as much vertical acceleration as possible given the spatial constraint of starting directly at the water's surface to aim.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据