4.6 Article

Motor Fault Detection and Feature Extraction Using RNN-Based Variational Autoencoder

期刊

IEEE ACCESS
卷 7, 期 -, 页码 139086-139096

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2019.2940769

关键词

Motor fault detection; feature extraction; recurrent neural network; variational autoencoder

资金

  1. Ministry of Science and Technology of Taiwan [MOST 107-2622-8-009-020, MOST 108-2221-E-009-059-MY2]

向作者/读者索取更多资源

In most of the fault detection methods, the time domain signals collected from the mechanical equipment usually need to be transformed into frequency domain or other high-level data, highly relying on professional knowledge such as signal processing and fault pattern recognition. Contrary to those existing approaches, we proposed a two-stage machine learning analysis architecture which can accurately predict the motor fault modes only by using motor vibration time-domain signals without any complicated preprocessing. In the first stage, the method RNN-based VAE was proposed which is highly suitable for dimension reduction of time series data. In addition to reducing the dimension of sequential data from 150*3 to 25 dimensions, our method furthermore improves the prediction accuracy evaluated by several classification algorithms. While other dimension reduction methods such as Autoencoder and Variational Autoencoder cannot improve the classification accuracy effectively or even decreased. It indicates that the sequential data after dimension reduction via the RNN-based VAE still can maintain the high-dimensional data information. Furthermore, the experimental results demonstrate that it can be well applied to time series data dimension reduction and shows a significant improvement of the prediction performance, even with a simple double-layer Neural Network can reach over 99% of accuracy. In the second stage, Principal Components Analysis (PCA) and Linear Discriminant Analysis (LDA) are used to further perform the second dimension reduction, such that the different or unknown fault modes can be clearly visualized and detected.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据