4.2 Article

Antimony oxidation and adsorption by in-situ formed biogenic Mn oxide and Fe-Mn oxides

期刊

JOURNAL OF ENVIRONMENTAL SCIENCES
卷 54, 期 -, 页码 126-134

出版社

SCIENCE PRESS
DOI: 10.1016/j.jes.2016.05.026

关键词

Biogenic Mn oxide; Biogenic Fe-Mn oxides; Oxidation and adsorption; Antimony; Arsenic

资金

  1. National Natural Science Foundation of China [51290282, 51578537, 51420105012]
  2. National Water Pollution Control and Treatment Science and Technology Major Project [2014ZX07405003]

向作者/读者索取更多资源

Antimony (Sb), which can be toxic at relatively low concentrations, may co-exist with Mn(II) and/or Fe(II) in some groundwater and surface water bodies. Here we investigated the potential oxidation and adsorption pathways of Sb (III and V) species in the presence of Mn(II) and Mn-oxidizing bacteria, with or without Fe(II). Batch experiments were conducted to determine the oxidation and adsorption characteristics of Sb species in the presence of biogenic Mn oxides (BMOs), which were formed in-situ via the oxidation of Mn(II) by a Mn-oxidizing bacterium (Pseudomonas sp. QJX-1). Results indicated that Sb(III) ions could be oxidized to Sb(V) ions by BMO, but only Sb(V) originating from Sb(III) oxidation was adsorbed effectively by BMO. Introduced Fe(II) was chemically oxidized to FeOOH, the precipitates of which mixed with BMO to form a new compound, biogenic Fe-Mn oxides (BFMO). The BMO part of the BFMO mainly oxidized and the FeOOH of the BFMO mainly adsorbed the Sb species. In aquatic solutions containing both As(III) and Sb(III), the BFMO that formed in-situ preferentially oxidized Sb over As but adsorbed As more efficiently. Chemical analysis and reverse transcription real-time polymerase chain reaction revealed that the presence of Fe(II), As(III) and Sb(III) accelerated the oxidation of Mn(II) but inhibited the activity of Mn-oxidizing bacteria. These results provide significant insights into the biogeochemical pathways of Sb, Mn(II) in aquatic ecosystems, with or without Fe(II). (C) 2016 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据