4.2 Article

DBP formation from degradation of DEET and ibuprofen by UV/chlorine process and subsequent post-chlorination

期刊

JOURNAL OF ENVIRONMENTAL SCIENCES
卷 58, 期 -, 页码 146-154

出版社

SCIENCE PRESS
DOI: 10.1016/j.jes.2017.06.014

关键词

Pharmaceuticals and personal care products; Disinfection by-products; UV/chlorine process; UV/H2O2 process; Chlorination

资金

  1. Hong Kong Research Grant Council [16208914]

向作者/读者索取更多资源

The formation of disinfection by-products (DBPs) from the degradation of N,N-diethyl-3-methyl benzoyl amide (DEET) and ibuprofen (IBP) by the ultraviolet irradiation (UV)/chlorine process and subsequent post-chlorination was investigated and compared with the UV/H2O2 process. The pseudo first-order rate constants of the degradation of DEET and IBP by the UV/chlorine process were 2 and 3.1 times higher than those by the UV/H2O2 process, respectively, under the tested conditions. This was due to the significant contributions of both reactive chlorine species (RCS) and hydroxyl radicals (HO center dot) in the UV/chlorine process. Trichloromethane, 1,1,1-trichloro-2-propanone and dichloroacetic acid were the major known DBPs formed after 90% of both DEET and IBP that were degraded by the UV/chlorine process. Their yields increased by over 50% after subsequent 1-day post-chlorination. The detected DBPs after the degradation of DEET and IBP comprised 13.5% and 19.8% of total organic chlorine (TOCl), respectively, and the proportions increased to 19.8% and 33.9% after subsequent chlorination, respectively. In comparison to the UV/H2O2 process accompanied with post-chlorination, the formation of DBPs and TOCl in the UV/chlorine process together with post-chlorination was 5%-63% higher, likely due to the generation of more DBP precursors from the attack of RCS, in addition to HO center dot. (C) 2017 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据