4.7 Article

Haloacetic acids degradation by an efficient Ferrate/UV process: Byproduct analysis, kinetic study, and application of response surface methodology for modeling and optimization

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 203, 期 -, 页码 218-228

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2017.07.072

关键词

DBPs; HAAs; Drinking water; AOPs; Fe(VI)/UV

资金

  1. Tehran University of Medical Sciences (TUMS) [94-01-27-28256]

向作者/读者索取更多资源

Haloacetic acids (HAAs) after trihalomethanes are the second main group of chlorination byproducts. In this study, decomposition of the two most common HAAs in drinking water was studied by an advanced oxidation process using a combination of Ferrate [Fe(VI)] and UV irradiation. The decomposition rate was measured, and the byproducts formed during the process and the mass balances were also analyzed. HAAs were quantified by GC-ECD, and the final products including acetate and chloride ions were measured by ion chromatography (IC). A central composite design was used for the experimental design, and the effect of four variables including the initial HAA concentration, pH, Fe(VI) dosage, and contact time were investigated by response surface methodology (RSM). Dichloroacetic acid decomposed more easily than TCAA. Results show that when TCAA and DCAA were studied individually, the degradation rates were 0.0179 and 0.0632 min(-1), respectively. When the HAAs were simultaneously placed in the reactor, the decomposition rates of both TCAA and DCAA decreased dramatically. In this case their decomposition rate constants decreased by 67% and 49%, respectively. In the mixture, the decomposition rate of DCAA was 2.5 times higher than that of TCAA. In summary, Fe(VI)/UV process can be used as a promising treatment option for the decomposition of recalcitrant organic pollutants such as HAAs, and RSM can be used for modeling and optimizing the process. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据