4.7 Article

Greenhouse gas balance of mountain dairy farms as affected by grassland carbon sequestration

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 196, 期 -, 页码 644-650

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2017.03.052

关键词

Small-scale dairy farm; Mountain; LCA; Grassland; Carbon sequestration; Forage self-sufficiency

资金

  1. Autonomous Province of Trento, Italy [4/2003, 47]
  2. ''Centro di Ricerca e Innovazione Tecnologica in Agricoltura'' (CRITA FVG) [26/2005, 18]

向作者/读者索取更多资源

Cycle Assessment (LCA) approach. In grassland-based livestock systems, soil carbon sequestration might be a potential sink to mitigate greenhouse gas (GHG) balance. Nevertheless, there is no commonly shared methodology. In this work, the GHG emissions of small-scale mountain dairy farms were assessed using the LCA approach. Two functional units, kg of Fat and Protein Corrected Milk (FPCM) and Utilizable Agricultural Land (UAL), and two different emissions allocations methods, no allocation and physical allocation, which accounts for the co-product beef, were considered. Two groups of small-scale dairy farms were identified based on the Livestock Units (LU) reared: <30 LU (LLU) and >30 LU (HLU). Before considering soil carbon sequestration in LCA, performing no allocation methods, LLU farms tended to have higher GHG emission than HLU farms per kg of FPCM (1.94 vs. 1.59 kg CO2-eq/kg FPCM, P <= 0.10), whereas the situation was reversed upon considering the m(2) of UAL as a functional unit (0.29 vs. 0.89 kg CO2-eq/m(2), P <= 0.05). Conversely, considering physical allocation, the difference between the two groups became less noticeable. When the contribution from soil carbon sequestration was included in the LCA and no allocation method was performed, LLU farms registered higher values of GHG emission per kg of FPCM than HLU farms (1.38 vs. 1.10 kg CO2-eq/kg FPCM, P <= 0.05), and the situation was likewise reversed in this case upon considering the m2 of UAL as a functional unit (0.22 vs. 0.73 kg CO2-eq/m(2), P <= 0.05). To highlight how the presence of grasslands is crucial for the carbon footprint of small-scale farms, this study also applied a simulation for increasing the forage self-sufficiency of farms to 100%. In this case, an average reduction of GHG emission per kg of FPCM of farms was estimated both with no allocation and with physical allocation, reaching 27.0% and 28.8%, respectively. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据