4.3 Article

Application of Computational Fluid Dynamics Simulation to Squeeze Film Damper Analysis

出版社

ASME
DOI: 10.1115/1.4036511

关键词

-

资金

  1. GE Aviation

向作者/读者索取更多资源

Squeeze film dampers (SFDs) are used in high-speed turbomachinery to provide external damping to the system. Computational fluid dynamics (CFD) simulation is a highly effective tool to predict the performance of SFDs and obtain design guidance. It is shown that a moving reference frame (MRF) can be adopted for CFD simulation, which saves computational time significantly. MRF-based CFD analysis is validated, then utilized to design oil plenums of SFDs. Effects of the piston ring clearances, the oil groove, and oil supply ports are studied based on CFD and theoretical solutions. It is shown that oil plenum geometries can significantly affect the performance of the SFD especially when the SFD has a small clearance. The equivalent clearance is proposed as a new concept that enables quick estimation of the effect of oil plenum geometries on the SFD performance. Some design practices that have been adopted in industry are revisited to check their validity. Based on simulation results, a set of general design guidelines is proposed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据