4.3 Article

Direct Numerical Simulation of Rotating Cavity Flows Using a Spectral Element-Fourier Method

出版社

ASME
DOI: 10.1115/1.4035593

关键词

-

资金

  1. CAPES foundation

向作者/读者索取更多资源

A high-order numerical method is employed to investigate flow in a rotor/stator cavity without heat transfer and buoyant flow in a rotor/rotor cavity. The numerical tool used employs a spectral element discretization in two dimensions and a Fourier expansion in the remaining direction, which is periodic and corresponds to the azimuthal coordinate in cylindrical coordinates. The spectral element approximation uses a Galerkin method to discretize the governing equations, but employs high-order polynomials within each element to obtain spectral accuracy. A second-order, semi-implicit, stiffly stable algorithm is used for the time discretization. Numerical results obtained for the rotor/stator cavity compare favorably with experimental results for Reynolds numbers up to Re-1 = 10(6) in terms of velocities and Reynolds stresses. The buoyancy-driven flow is simulated using the Boussinesq approximation. Predictions are compared with previous computational and experimental results. Analysis of the present results shows close correspondence to natural convection in a gravitational field and consistency with experimentally observed flow structures in a water-filled rotating annulus. Predicted mean heat transfer levels are higher than the available measurements for an air-filled rotating annulus, but in agreement with correlations for natural convection under gravity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据