4.5 Article

Uptake and Retention of Nanoplastics in Quagga Mussels

期刊

GLOBAL CHALLENGES
卷 4, 期 6, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/gch2.201800104

关键词

AFM-IR; microplastics; mussels; nanoplastics; PT-IR

资金

  1. Gordon and Betty Moore Foundation [5598]
  2. National Science Foundation Graduate Research Fellowship [DGE 1256260]

向作者/读者索取更多资源

Here, a set of experiments to assess the feasibility of using an invasive and widespread freshwater mussel (Dreissena rostrformis bugensis) as a sentinel species for nanoplastic detection is reported. Under laboratory experimental conditions, mussels ingest and retain fluorescent polystyrene (PS) beads with carboxylic acid (- COOH) termination over a size range of 200-2000 nm. The number of beads the mussels ingested is quantified using fluorescence spectroscopy and the location of the beads in the mussels is imaged using fluorescence microscopy. PS beads of similar size (1000-2000 nm) to mussels' preferred food are trafficked in the ciliated food grooves of the gills. Beads of all sizes are observed in the mussels' digestive tracts, indicating that the mussels do not efficiently reject the beads as unwanted foreign material, regardless of size. Fluorescence microscopy shows all sizes of beads are concentrated in the siphons and are retained there for longer than one month postexposure. Combined atomic force microscopy-infrared spectroscopy and photothermal infrared spectroscopy are used to locate, image, and chemically identify the beads in the mussel siphons. In sum, these experiments demonstrate the potential for using mussels, specifically their siphons, to monitor environmental accumulation of aquatic nanoplastics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据