4.7 Article

A comparative study of various electrochemical sensors for hydrazine detection based on imidazole derivative and different nano-materials of MCM-41, RGO and MWCNTs: Using net analyte signal (NAS) for simultaneous determination of hydrazine and phenol

期刊

JOURNAL OF ELECTROANALYTICAL CHEMISTRY
卷 787, 期 -, 页码 145-157

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jelechem.2017.01.006

关键词

Hydrazine; Phenol; Reduced graphene oxide; MCM-41 nanomaterial; Modifier; Net analyte signal (NAS)

资金

  1. Yazd University Research Council [50/982]

向作者/读者索取更多资源

The present paper reports using 5-(5-chloro-2,4-dihydroxyphenyl)imidazo[4,5-d] [1,3]thiazin-7(3H)-one (CIT) and different characterized nano-materials (nano particles based on silica (MCM-41)) and carbon (reduced graphene oxide (RGO), carbon Nano-tubes (CNT) and the mixture of them (CNT/RGO)) in the carbon pate electrode (CPE) structure as new platforms for hydrazine determination. The main purpose of this paper is investigation of effect of silica and carbon nanomaterials on the electrochemical behaviour of the various designed sensors (CIT/MCM41/CPE, CIT/RGO/CNT/CPE, CIT/RGO/CPE and CIT/CNT/CPE) for hydrazine analysis. Under the optimum conditions, some kinetic parameters of modifier such as electron transfer coefficient (a) and heterogeneous rate constant (k) for hydrazine were obtained. The observations revealed that using nanomaterials of MCM-41, RGO, CNT and RGO/CNT has a key role in decreasing oxidation potential and increasing oxidation peak currents, obtaining wider linear range and lower detection limit. The results indicated that CIT/MCM41/CPE sensor possess two linear ranges (0.01-0.032 mu M and 1.0-200 mu M) and a lower detection limit (0.0033 mu M based on 3S(b)/m) than other fabricated sensors. The designed sensor was used for simultaneous determination of hydrazine and phenol. The obtained differential pulse voltammograms indicated overlapping and to solve this problem, net analyte signal (NAS) was used. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据