4.7 Article

Mesoporous carbon supported Pt/MO2 (M = Ce, Pr, Nd, Sm) heteronanostructure: Promising non-Ru methanol oxidation reaction catalysts for direct methanol fuel cell application

期刊

JOURNAL OF ELECTROANALYTICAL CHEMISTRY
卷 794, 期 -, 页码 86-92

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jelechem.2017.03.048

关键词

Metal oxide support; Direct methanol fuel cells; Anode catalyst; Methanol oxidation reaction; Catalyst performance

资金

  1. Center for Advanced Materials (CAM), Qatar University [QUUG-CAM-CAM-15\16-2]
  2. Center of Excellence in Renewable Energy at King Fahd University of Petroleum & Minerals (KFUPM)
  3. Ahmadu Bello University, Zaria, Nigeria

向作者/读者索取更多资源

Direct methanol fuel cells (DMFCs) proved to be promising alternative for renewable energy resources. There are several factors involved for the hindrance of their commercialization. Herein, the alteration in catalyst's chemistry has been mainly focused to improve the performance of DMFCs. Mesoporous carbon supported bimetallic combinations of Pt with metallic Oxides such as, Pt/CeO2-MC, Pt/PrO2-MC, Pt/NdO2-MC, and Pt/SmO2-MC were synthesized and tested as methanol electro-oxidation anode catalysts. These high-surface area anodes were synthesized by impregnation with Pt to form the desired methanol electro-oxidation catalysts. The as-prepared catalysts were characterized using XRD, BET surface area, and EDS. High surface areas of 684-778 m(2)/g were achieved for the CeO2-MC, PrO2-MC, NdO2-MC, and SmO2-MC, which enabled excellent dispersion of the Pt nanoparticles onto their surfaces. The Pt/CeO2-MC catalyst showed the highest activity for methanol electro-oxidation, which is about 3.5% more than that of the commercial Pt-Ru/C (E-TEK) catalyst. In addition, the prepared catalysts showed significant stability and durability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据