4.6 Article

Field Residues and Effects of the Insect Growth Regulator Novaluron and Its Major Co-Formulant N-Methyl-2-Pyrrolidone on Honey Bee Reproduction and Development

期刊

JOURNAL OF ECONOMIC ENTOMOLOGY
卷 110, 期 5, 页码 1993-2001

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/jee/tox220

关键词

formulation; inert; agrochemical; insect growth regulator; NMP

向作者/读者索取更多资源

Owing to the recent declines in honey bee (Apis mellifera L.) populations, there is a need for field and laboratory studies to investigate threats to pollinator health. This study examines the hypothesis that the organophosphate alternative, Rimon 0.83EC, can have consequences to honey bee health by combining newly acquired field residue data, laboratory bioassays, and colony level feeding studies. Following label rate applications of Rimon 0.83EC to apple trees, average residue concentrations of the active ingredient, novaluron, were found to be 3.38 ppm in tree-collected pollen. Residues of the major co-formulant in Rimon 0.83EC, N-methyl-2-pyrrolidone (NMP), were below the limit of detection in the field, but a growth chamber study described here found that NMP can persist in pollen for up to 7 d with average concentrations of 69.3 ppm. Concurrent larval rearing studies found novaluron and NMP to be toxic to developing honey bees at doses as low as 100 ppb and 100 ppm, respectively. Nucleus colony feeding studies found that chronic exposure to Rimon 0.83EC at doses as low as 200 ppm (18.6 ppm novaluron) can result in interruptions to brood production that can last for up to 2 wk after exposure. Taken together, these data indicate the use of Rimon 0.83EC on blooming flowers is a significant threat to honey bee reproduction, and suggest the need for more strict and clear usage guidelines.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据