4.7 Article

Improving genetic evaluation using a multitrait single-step genomic model for ability to resume cycling after calving, measured by activity tags in Holstein cows

期刊

JOURNAL OF DAIRY SCIENCE
卷 100, 期 10, 页码 8188-8196

出版社

ELSEVIER SCIENCE INC
DOI: 10.3168/jds.2017-13122

关键词

genomic prediction; multitrait analysis; reliability; activity tags

资金

  1. Danish Milk Levy Fund
  2. Nordic Cattle Genetic Evaluation (NAV)
  3. VikingGenetics
  4. Aarhus University

向作者/读者索取更多资源

The objective of this study was to evaluate the improvement of the accuracy of estimated breeding values for ability to recycle after calving by using information of genomic markers and phenotypic information of correlated traits. The traits in this study were the interval from calving to first insemination (CFI), based on artificial insemination data, and the interval from calving to first high activity (CFHA), recorded from activity tags, which could better measure ability to recycle after caving. The phenotypic data set included 1,472,313 records from 820,218 cows for CFI, and 36,504 records from 25,733 cows for CFHA. The genomic information was available for 3,159 progeny-tested sires, which were genotyped using Illurnina Bovine SNP50 BeadChip (Ii lumina, San Diego, CA). Heritability estimates were 0.06 for the interval from calving to first insemination and 0.14 for the interval from calving to first high activity, and the genetic correlation between both traits was strong (0.87). Breeding values were obtained using 4 models: conventional single-trait BLUP; conventional multitrait BLUP with pedigree-based relationship matrix; single-trait single-step genomic BLUP; and multitrait single-step genomic BLUP model with joint relationship matrix combining pedigree and genomic information. The results showed that reliabilities of estimated breeding values (EBV) from single-step genomic BLUP models were about 40% higher than those from conventional BLUP models for both traits. Furthermore, using a multitrait model doubled the reliability of breeding values for CFHA, whereas no gain was observed for CFI. The best model was the multitrait single-step genomic BLUP, which resulted in a reliability of EBV 0.19 for CFHA and 0.14 for CFI. The results indicate that even though a relatively small number of records for CFHA were available, with genomic information and using multitrait model, the reliability of EBV for CFHA is acceptable. Thus, it is feasible to include CFHA in Nordic Holstein breeding evaluations to improve fertility performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据