4.3 Article

Bone biology in postnatal Wistar rats following hypoxia-reoxygenation

期刊

HISTOLOGY AND HISTOPATHOLOGY
卷 35, 期 1, 页码 111-124

出版社

F HERNANDEZ
DOI: 10.14670/HH-18-143

关键词

Apoptosis; Bone biology; Endoplasmic reticulum stress; Hypoxia; Osteoblast

资金

  1. National Medical Research Council of Singapore [NMRC/CNIG/1147/2016]

向作者/读者索取更多资源

Hypoxia response pathways have a central role in normal and abnormal bone biology but the effect of systemic hypoxia-reoxygenation on bone is not clear. Following hypoxic exposure, aberrant synthesis, folding and trafficking of proteins has been reported to occur, which can result in endoplasmic reticulum (ER) stress and may finally cause cell death. This study aimed to examine the effect of systemic hypoxia-reoxygenation injury on bone biology in postnatal rats. Immunoexpression of HIF-1 alpha and VEGF was upregulated in femurs of newborn Wistar rats in response to systemic hypoxia-reoxygenation. Along with that, increased apoptosis of osteoblast precursors, osteoblasts, osteocytes and endothelial cells was observed in comparison to femurs of control animals by transmission electron microscopy, TUNEL staining and immunoexpression of cleaved caspase-3. The viability of osteoclasts was not affected. After hypoxia-reoxygenation, ER stress was observed in the osteoblasts and osteocytes as indicated by dilatation of the ER and enhanced immunoexpression of the ER stress marker GRP78. Localisation of collagen alpha 1 immunoreaction was widespread in the bone matrix of control femurs but was confined to the osteoblasts and osteocytes in response to hypoxia-reoxygenation. In support of these findings, in vitro work showed reduced viability of osteoblast-like SaOs-2 cells and upregulation of GRP78 protein expression in them by western blotting following exposure to hypoxia. This suggests that systemic hypoxia-reoxygenation may disturb bone biology in postnatal Wistar rats by inducing ER stress and apoptosis in osteoblasts and osteocytes, without affecting the viability of osteoclasts. More in-depth research is needed to confirm causality between ER stress and apoptosis of osteoblasts and osteocytes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据