4.5 Article

Biocompatibility and degradation properties of WE43 Mg alloys with and without heat treatment: In vivo evaluation and comparison in a cranial bone sheep model

期刊

JOURNAL OF CRANIO-MAXILLOFACIAL SURGERY
卷 45, 期 12, 页码 2075-2083

出版社

CHURCHILL LIVINGSTONE
DOI: 10.1016/j.jcms.2017.09.016

关键词

Magnesium alloys; Biomaterial; Implant; Biocompatibility; Degradation; Animal model

向作者/读者索取更多资源

Purpose: Orthopedic and maxillofacial bone fractures are routinely treated by titanium internal fixation, which may be prone to exposure, infection or intolerance. Magnesium (Mg) and its alloys represent promising alternatives to produce biodegradable osteosynthesis devices, with biocompatibility and, specifically, hydrogen gas production during the degradation process, being the main drawback. Aim of this study is to test and compare biocompatibility, degradation rate and physiscochemical properties of two Mg-alloys to identify which one possesses the most suitable characteristics to be used as resorbable hardware in load-bearing fracture sites. Materials and methods: As-cast (WE43) and T5 Mg-alloys were tested for biocompatibility, physical, mechanical and degradation properties. Microstructure was assessed by optical microscopy, scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS); mechanical properties were tested utilizing quasi-static compression and failure analysis. Locoregional biocompatibility was tested by subperiosteal implantation on the fronto-nasal region of large-animal model (sheep): regional immuno-reaction and metal accumulation was analyzed by LA-ICP of tributary lymph-nodes, local reactions were analyzed through histological preparation including bone, implant and surrounding soft tissue. Results: Mechanically, T5 alloy showed improvement in strength compared to the as-cast. Lymph-node Mg accumulation depicted no differences between control (no implant) and study animals. Both alloys showed good biocompatibility and osteogenesis-promoting properties. Conclusion: This study demonstrated excellent biocompatibility and osteogenesis-promoting capabilities of the tested alloys, providing a platform for further studies to test them in a maxillofacial fracture setting. T-5 alloy displayed more stability and decreased degradation rate than the as-cast. (C) 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据