4.7 Article

Stoichiometric imbalance-promoted step-growth polymerization based on self-accelerating 1,3-dipolar cycloaddition click reactions

期刊

POLYMER CHEMISTRY
卷 11, 期 1, 页码 125-134

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9py01362h

关键词

-

资金

  1. National Science Foundation of China [21622406, 21871273]
  2. National Key Research and Development Program of China [2019YFA0210400]

向作者/读者索取更多资源

A library of self-accelerating click reactions was developed based on the 1,3-dipolar cycloaddition of sym-dibenzo-1,5-cyclooctadiene-3,7-diyne (DIBOD) and varied 1,3-dipoles, such as diazo, sydnone, and nitrone groups. A common feature of these reactions was that the reaction of a 1,3-dipole and the first alkyne moiety of DIBOD activated in situ the second alkyne moiety, which consequently reacted with a 1,3-dipole at a much faster rate than did the original DIBOD alkyne group. Because these were polymerization reactions, a novel kind of stoichiometric imbalance-promoted step-growth polymerization method was developed specifically to prepare high molecular weight (>10(5) g mol(-1)) polymers containing five-membered heterocycles inside polymer backbones. The self-accelerating property of the DIBOD-based 1,3-dipolar cycloadditions enabled the use of step-growth polymerization to prepare high molecular weight polymers under stoichiometric imbalance conditions using an excess of DIBOD over bis-dipole monomers. The click characteristics of the DIBOD-based 1,3-dipolar cycloadditions assisted the step-growth polymerization so that polymers could be prepared under ambient and catalyst-free conditions. In addition, the varied five-membered heterocycle structures inside the backbones endowed the resultant polymers with distinctly unique properties and functions. The polymers with isoxazoline groups inside the backbones demonstrated self-degradation behavior, where higher molecular weights resulted in greater degradation. The polymers with pyrazole groups inside the backbones had excellent thermal properties: the decomposition temperature at 5% weight loss could reach 576 degrees C, the glass transition temperature could not be measured up to 400 degrees C, and the char yield at 800 degrees C was as high as 71%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据