4.6 Article

Constraints on vacuum energy from structure formation and Nucleosynthesis

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1475-7516/2017/03/021

关键词

big bang nucleosynthesis; dark energy theory; stars

资金

  1. JT Foundation [ID55112]
  2. Bahnson Trust Fund

向作者/读者索取更多资源

This paper derives an upper limit on the density rho(Lambda) of dark energy based on the requirement that cosmological structure forms before being frozen out by the eventual acceleration of the universe. By allowing for variations in both the cosmological parameters and the strength of gravity, the resulting constraint is a generalization of previous limits. The specific parameters under consideration include the amplitude Q of the primordial density fluctuations, the Planck mass M-pl, the baryon-to-photon ratio eta, and the density ratio Omega(M) / Omega(b). In addition to structure formation, we use considerations from stellar structure and Big Bang Nucleosynthesis (BBN) to constrain these quantities. The resulting upper limit on the dimensionless density of dark energy becomes rho(Lambda) / M-pl(4) < 10(-90), which is similar to 30 orders of magnitude larger than the value in our universe rho(Lambda) / M-pl(4) similar to 10(-120). This new limit is much less restrictive than previous constraints because additional parameters are allowed to vary. With these generalizations, a much wider range of universes can develop cosmic structure and support observers. To constrain the constituent parameters, new BBN calculations are carried out in the regime where eta and G = M-pl(-2) are much larger than in our universe. If the BBN epoch were to process all of the protons into heavier elements, no hydrogen would be left behind to make water, and the universe would not be viable. However, our results show that some hydrogen is always left over, even under conditions of extremely large eta and G, so that a wide range of alternate universes are potentially habitable.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据