3.9 Article

Binary chemical reaction with activation energy in radiative rotating disk flow of Bingham plastic fluid

期刊

HEAT TRANSFER
卷 49, 期 3, 页码 1314-1337

出版社

WILEY
DOI: 10.1002/htj.21663

关键词

activation energy; anisotropic slip; Bingham fluid; rotating disk; thermal radiation

向作者/读者索取更多资源

This article presents flow, heat and mass transfer phenomena in Bingham plastic fluid. The flow channel is considered to be a rotating disk with a slip which is different in span and streamwise directions, and heat transfer is investigated using dissipation term of the fluid. Arrhenius activation energy and binary chemical reaction are the imperative features of the study of mass transfer. Bingham plastic fluid and anisotropic slip are the key factors of the study due to their numerous applications in manufacturing industries. On the other hand, the radiative heat transfer phenomenon is considered which is widely used in nuclear and power generating systems. The partial differential equations that govern the flow, and heat and mass transfer are converted into ordinary differential equations by utilizing von Karman's similarity transformation for rotating disk flows. The velocity, temperature, and concentration profiles and some important physical quantities are examined against important flow parameters. It is observed that the thermal radiation showed an increasing effect on temperature profile and the activation energy enhanced the mass transfer rate. The radial slip increased the volumetric flow rate and reduced the boundary layer thickness. The tangential slip reduced the volumetric flow rate and increased the boundary layer thickness.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据