4.8 Article

Rigidity of polymer micelles affects interactions with tumor cells

期刊

JOURNAL OF CONTROLLED RELEASE
卷 257, 期 -, 页码 40-50

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jconrel.2016.12.013

关键词

-

资金

  1. Israel Science Foundation [0394883]
  2. FP7 Marie Curie CIG grant [0305116]
  3. Edith C. Blum Foundation [0364801]

向作者/读者索取更多资源

Controlling the interaction of drug delivery systems (DDS) with tissues is critical for the success of therapies. Specifically in cancer, due to the high density of the tumors, tissue penetration of DDS is critical and may be challenging. In previous work we have shown that Solidified Polymer Micelles (SPMs) rapidly internalize into cells and tissues. Using AFM analysis, in the present work we measured differences in rigidity of SPM compared with Wet PolymerMicelles (WPM). We further examined whether the semi-solid form of hydrated SPMs has an effect on the interaction with tumor cells both in mono-layer systems and in multi-layer clusters of cells as spheroids. For that we have performed detailed characterization of SPM compared to WPM, including examinations of particle size, stability, drug release kinetics and cell transcytosis, inmelanoma A-375 cells. Cell uptake measurements were done using fluorescent signal analysis, FACS and microscopy imaging, showing enhanced abilities of SPMs to penetrate cells and tissues. A simple physical model is presented that well agrees with the experiments and provides insight about the role of particle rigidity in the engulfment mechanism. We conclude that particle rigidity enhances cellular uptake and tissue penetration and that SPMs have a promising potential as an effective and highly permeable DDS. Our findings can be important in future rational design of DDS for particle adjustment to specific tissues and pathologies. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据