3.9 Article

Heat transport on steady MHD flow of copper and alumina nanofluids past a stretching porous surface

期刊

HEAT TRANSFER
卷 49, 期 3, 页码 1374-1385

出版社

WILEY
DOI: 10.1002/htj.21667

关键词

Cu/Al2O3; heat transport; MHD flows; nanofluid; porous surface

向作者/读者索取更多资源

An attempt is made to investigate the steady magnetohydrodynamic convective flow of the viscous nanofluid due to a permeable exponentially stretching porous surface. Water is used as a traditional fluid while nanoparticles include copper and alumina. The fluid is electrically conducting, subject to an applied magnetic field with a constant strength. Convective type boundary conditions are employed in modeling the heat transfer process. The nonlinear partial differential equations governing the flow are reduced to an ordinary differential equation by similarity transformations and then solved using the Runge-Kutta fourth-order method. A parametric study of the physical parameters is made, and a representative set of numerical results for the velocity and temperature, as well as local shear stress and local Nusselt number, is presented graphically. Hartman number increase diminishes the velocity and has the contrary result in the subjective sense for the mass transfer parameter. An increase in the Prandtl number Pr lessens the temperature and thickness of the thermal boundary layer. The main conclusions have been indicated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据