4.8 Article

Bisphosphonate-functionalized coordination polymer nanoparticles for the treatment of bone metastatic breast cancer

期刊

JOURNAL OF CONTROLLED RELEASE
卷 264, 期 -, 页码 76-88

出版社

ELSEVIER
DOI: 10.1016/j.jconrel.2017.08.024

关键词

Bone metastasis; Coordination polymer nanoparticles; Bone targeting; Alendronate; Cisplatin

资金

  1. National Natural Science Foundation of China [81673369/H3008]
  2. Science and Technology Planning Key Project of Guangdong Province, China [2015B020211005]

向作者/读者索取更多资源

Bone is the most common organ affected by metastatic breast cancer. Targeting cancers within the bone remains a great challenge due to the inefficient delivery of therapeutic to bone. In this study, a polyethylene glycol (PEG) coated nanoparticles (NPs) made of a Zn2+ coordination polymer was linked with a bone seeking moiety, alendronate (ALN), to deliver cisplatin prodrug (DSP) to the bone. The particle sizes of this novel system, DSP-Zn@PEG-ALN NPs, were regulated by adjusting the volume ratio of water phase to oil phase in microemulsion. It was small enough (about 55 nm) to extravasate through the clefts (80 nm) of the bone's sinusoidal capillaries and localize into metastatic bones. DSP-Zn@PEG-ALN NPs showed much higher affinity for hydroxyapatite in vitro and bone in vivo than non-targeted DSP-Zn@PEG NPs and cisplatin. In addition, the in vivo biodistribution studies demonstrated that about 4-fold of platinum was delivered to the bone metastatic lesions than that in healthy bones by DSP-Zn@PEG-ALN NPs intravenously. Finally, DSP-Zn@PEG-ALN NPs not only inhibited the tumor growth efficiently but also reduced the osteocalastic bone destruction. Besides, DSP-Zn@PEG-ALN NPs showed significantly reduced toxicity of cisplatin. These results indicate that the DSP-Zn@PEG-ALN NPs have a great potential in enhancing chemotherapeutic efficacy for the treatment of bone metastatic breast cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据