4.6 Article

Deep learning for automated classification and characterization of amorphous materials

期刊

SOFT MATTER
卷 16, 期 2, 页码 435-446

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9sm01903k

关键词

-

资金

  1. National Science Foundation [DMS-1439786]
  2. DARPA [HR00111890038]
  3. NSF [MRI 1828629]

向作者/读者索取更多资源

It is difficult to quantify structure-property relationships and to identify structural features of complex materials. The characterization of amorphous materials is especially challenging because their lack of long-range order makes it difficult to define structural metrics. In this work, we apply deep learning algorithms to accurately classify amorphous materials and characterize their structural features. Specifically, we show that convolutional neural networks and message passing neural networks can classify two-dimensional liquids and liquid-cooled glasses from molecular dynamics simulations with greater than 0.98 AUC, with no a priori assumptions about local particle relationships, even when the liquids and glasses are prepared at the same inherent structure energy. Furthermore, we demonstrate that message passing neural networks surpass convolutional neural networks in this context in both accuracy and interpretability. We extract a clear interpretation of how message passing neural networks evaluate liquid and glass structures by using a self-attention mechanism. Using this interpretation, we derive three novel structural metrics that accurately characterize glass formation. The methods presented here provide a procedure to identify important structural features in materials that could be missed by standard techniques and give unique insight into how these neural networks process data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据