4.5 Article

MOF@PEDOT Composite Films for Impedimetric Pesticide Sensors

期刊

GLOBAL CHALLENGES
卷 4, 期 2, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/gch2.201900076

关键词

conductive polymers; imazalil; impedance spectroscopy; metal-organic frameworks; PEDOT; pesticide sensors

资金

  1. CONICET
  2. ANPCyT [PICT-2010-2554, PICT-2013-0905]
  3. CEST-Competence Center for Electrochemical Surface Technologies (CEST-UNLP Partner Lab for Bioelectronics)

向作者/读者索取更多资源

Due to its deleterious effects on health, development of new methods for detection and removal of pesticide residues in primary and derived agricultural products is a research topic of great importance. Among them, imazalil (IMZ) is a widely used post-harvest fungicide with good performances in general, and is particularly applied to prevent green mold in citrus fruits. In this work, a composite film for the impedimetric sensing of IMZ built from metal-organic framework nanocrystallites homogeneously distributed on a conductive poly(3,4-ethylene dioxythiophene) (PEDOT) layer is presented. The as-synthetized thin films are produced via spin-coating over poly(ethylene terephtalate (PET) substrate following a straightforward, cost-effective, single-step procedure. By means of impedance spectroscopy, electric transport properties of the films are studied, and high sensitivity towards IMZ concentration in the range of 15 ppb to 1 ppm is demonstrated (featuring 1.6 and 4.2 ppb limit of detection, when using signal modulus and phase, respectively). The sensing platform hereby presented could be used for the construction of portable, miniaturized, and ultrasensitive devices, suitable for pesticide detection in food, wastewater effluents, or the assessment of drinking-water quality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据