4.7 Article

Absorbing random walks interpolating between centrality measures on complex networks

期刊

PHYSICAL REVIEW E
卷 101, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.101.012302

关键词

-

资金

  1. US National Science Foundation [DMR-1104829]
  2. Research Council of Norway through the Center of Excellence funding scheme [262644]

向作者/读者索取更多资源

Centrality, which quantifies the importance of individual nodes, is among the most essential concepts in modern network theory. As there are many ways in which a node can be important, many different centrality measures are in use. Here, we concentrate on versions of the common betweenness and closeness centralities. The former measures the fraction of paths between pairs of nodes that go through a given node, while the latter measures an average inverse distance between a particular node and all other nodes. Both centralities only consider shortest paths (i.e., geodesics) between pairs of nodes. Here we develop a method, based on absorbing Markov chains, that enables us to continuously interpolate both of these centrality measures away from the geodesic limit and toward a limit where no restriction is placed on the length of the paths the walkers can explore. At this second limit, the interpolated betweenness and closeness centralities reduce, respectively, to the well-known current-betweenness and resistance-closeness (information) centralities. The method is tested numerically on four real networks, revealing complex changes in node centrality rankings with respect to the value of the interpolation parameter. Nonmonotonic betweenness behaviors are found to characterize nodes that lie close to intercommunity boundaries in the studied networks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据