4.3 Article

A Nicotiana benthamiana AP2/ERF transcription factor confers resistance to Phytophthora parasitica

期刊

PHYTOPATHOLOGY RESEARCH
卷 2, 期 1, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1186/s42483-020-0045-3

关键词

Nicotiana benthamiana; Phytophthora parasitica; AP2; ERF; Proteinase inhibitor

资金

  1. National Natural Science Foundation of China [31625023]
  2. Special Fund for Agro scientific Research in the Public Interest [201503112]

向作者/读者索取更多资源

Diseases caused by Phytophthora species seriously affect global crop production and food security. Identification of key factors involved in plant resistance is valuable for disease management. Previously, we characterized the transcriptome of Nicotiana benthamiana which was infected with Phytophthora parasitica. Here, we selected NbERF173, one of the most strongly up-regulated genes of N. benthamiana in response to P. parasitica infection, for further investigation. First, NbERF173 encodes a conserved transcription factor in our tested plant species. Second, overexpression of NbERF173 in N. benthamiana enhanced its resistance to P. parasitica, and silencing of NbERF173 significantly promoted the infection of both P. parasitica and Botrytis cinerea. Additionally, we demonstrated that NbERF173 can participate in reprograming of gene expression during P. parasitica infection and manipulate expression patterns of many defense-related genes, including two proteinase inhibitors encoding genes (PI1-B and KTI1). Furthermore, overexpression of PI1-B and KTI1 strengthened plant resistance to P. parasitica and partially restored the deficiency in resistance of NbERF173-silenced N. benthamiana plants. Finally, we found that NbERF173 could not bind to the promoters of PI1-B and KTI1 using yeast one-hybrid assay. Together, our results suggest that NbERF173 positively regulate the disease resistance, probably by reprograming of defense-related genes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据