4.6 Article

Magnetic Connectivity of the Ecliptic Plane within 0.5 au: Potential Field Source Surface Modeling of the First Parker Solar Probe Encounter

期刊

出版社

IOP PUBLISHING LTD
DOI: 10.3847/1538-4365/ab4da7

关键词

-

资金

  1. Johns Hopkins Applied Physics Laboratory as part of NASA's Living with a Star (LWS) program [NNN06AA01C]
  2. NASA [NNN06AA01C]
  3. Leverhulme Trust Visiting Professorship program
  4. NASA Headquarters under the NASA Earth and Space Science Fellowship Program [80NSSC18K1201]
  5. AFRL
  6. STFC [ST/S006559/1] Funding Source: UKRI

向作者/读者索取更多资源

We compare magnetic field measurements taken by the FIELDS instrument on board Parker Solar Probe (PSP) during its first solar encounter to predictions obtained by potential field source surface (PFSS) modeling. Ballistic propagation is used to connect the spacecraft to the source surface. Despite the simplicity of the model, our results show striking agreement with PSP's first observations of the heliospheric magnetic field from similar to 0.5 au (107.5 R-circle dot) down to 0.16 au (35.7 R-circle dot). Further, we show the robustness of the agreement is improved both by allowing the photospheric input to the model to vary in time, and by advecting the field from PSP down to the PFSS model domain using in situ PSP/Solar Wind Electrons Alphas and Protons measurements of the solar wind speed instead of assuming it to be constant with longitude and latitude. We also explore the source surface height parameter (R-SS) to the PFSS model, finding that an extraordinarily low source surface height (1.3-1.5 R-circle dot) predicts observed small-scale polarity inversions, which are otherwise washed out with regular modeling parameters. Finally, we extract field line traces from these models. By overlaying these on extreme ultraviolet images we observe magnetic connectivity to various equatorial and mid-latitude coronal holes, indicating plausible magnetic footpoints and offering context for future discussions of sources of the solar wind measured by PSP.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据