4.7 Review

Application of deep learning for retinal image analysis: A review

期刊

COMPUTER SCIENCE REVIEW
卷 35, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.cosrev.2019.100203

关键词

Deep learning; Deep neural network; Convolutional neural network; Auto-encoder; Sparse stacked auto-encoder; De-noised sparse auto-encoder; Softmax; Random forest; Rectified linear unit; Hidden layers

向作者/读者索取更多资源

Retinal image analysis holds an imperative position for the identification and classification of retinal diseases such as Diabetic Retinopathy (DR), Age Related Macular Degeneration (AMD), Macular Bunker, Retinoblastoma, Retinal Detachment, and Retinitis Pigmentosa. Automated identification of retinal diseases is a big step towards early diagnosis and prevention of exacerbation of the disease. A number of state-of-the-art methods have been developed in the past that helped in the automatic segmentation and identification of retinal landmarks and pathologies. However, the current unprecedented advancements in deep learning and modern imaging modalities in ophthalmology have opened a whole new arena for researchers. This paper is a review of deep learning techniques applied to 2-D fundus and 3-D Optical Coherence Tomography (OCT) retinal images for automated classification of retinal landmarks, pathology, and disease classification. The methodologies are analyzed in terms of sensitivity, specificity, Area under ROC curve, accuracy, and F score on publicly available datasets which includes DRIVE, STARE, CHASE_DB1, DRiDB, NIH AREDS, ARIA, MESSIDOR-2, E-OPTHA, EyePACS-1 DIARETDB and OCT image datasets. (C) 2019 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据