4.1 Article

Neural network modeling and simulation of the synthesis of CuInS2/ZnS quantum dots

期刊

ENGINEERING REPORTS
卷 2, 期 2, 页码 -

出版社

WILEY
DOI: 10.1002/eng2.12122

关键词

CuInS2; ZnS; neural network; optimization; quantum dots; simulation

向作者/读者索取更多资源

The development of recipes for synthesis of quantum dots (QDs), a novel semiconductor material for application in optoelectronic devices, is currently purely based on experiments. Since the quality of QDs represented by quantum yield (QY) and emission peak strongly depends on a number of different parameters (route, precursors, conditions, etc), a large number of experiments is necessary. In this article, we show that data-driven modeling can be used as a supporting tool for optimization and a better understanding of the synthesis process. By using the results collected during the development of CuInS2/ZnS (CIS/ZnS) QDs, a neural network model has been established. The model is able to predict the optical properties (QY and emission peak) of CIS/ZnS QDs as a function of the most important synthesis parameters, such as reaction temperature, time of CIS core formation and ZnS shell growth, feed molar ratio of Cu/In and Zn/Cu, various starting precursors, and types of ligands. Finally, a model analysis under various effects influencing the quality of QDs is performed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据