4.7 Article

Using noisy or incomplete data to discover models of spatiotemporal dynamics

期刊

PHYSICAL REVIEW E
卷 101, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.101.010203

关键词

-

资金

  1. NSF [CMMI-1725587]
  2. ARO [W911NF-15-10471]
  3. Letson Undergraduate Research Scholarship

向作者/读者索取更多资源

Sparse regression has recently emerged as an attractive approach for discovering models of spatiotemporally complex dynamics directly from data. In many instances, such models are in the form of nonlinear partial differential equations (PDEs); hence sparse regression typically requires the evaluation of various partial derivatives. However, accurate evaluation of derivatives, especially of high order, is infeasible when the data are noisy, which has a dramatic negative effect on the result of regression. We present an alternative and rather general approach that addresses this difficulty by using a weak formulation of the problem. For instance, it allows accurate reconstruction of PDEs involving high-order derivatives, such as the Kuramoto-Sivashinsky equation, from data with a considerable amount of noise. The flexibility of our approach also allows reconstruction of PDE models that involve latent variables which cannot be measured directly with acceptable accuracy. This is illustrated by reconstructing a model for a weakly turbulent flow in a thin fluid layer, where neither the forcing nor the pressure field is known.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据