4.4 Article

Structural considerations for physical hydrogels based on polymer-nanoparticle interactions

期刊

MOLECULAR SYSTEMS DESIGN & ENGINEERING
卷 5, 期 1, 页码 401-407

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9me00120d

关键词

-

资金

  1. Kodak Fellowship
  2. Center for Human Systems Immunology with Bill & Melinda Gates Foundation [OPP1113682]
  3. Novo Nordisk Foundation [NNF18OC0030896]
  4. Stanford Bio-X Program
  5. National Science Foundation [ECCS-1542152]

向作者/读者索取更多资源

Designing supramolecular hydrogels for complex translational applications requires the ability to engineer viscoelasticity and flow behaviour at the bulk scale as well as the network structure at the nano and micro scales. Here we examine supramolecular hydrogels formed by polymer-nanoparticle interactions between hydrophobically-modified biopolymers and polymeric nanoparticles. Crosslinking in these systems is driven by dynamic and multivalent interactions between the biopolymers and the nanoparticles. We demonstrate control over viscoelasticity and microstructure by altering the hydrophobicity of pendant groups along the polymer backbone. Increasing the pendant group hydrophobicity creates larger polymer corona heights and, once a critical interparticle distance is spanned, induces a jammed microstructure that reinforces bridging based crosslinking. These studies suggest that design considerations for polymer-nanoparticle hydrogels are analogous to those of jammed soft glasses and provide an engineering handle to tune microstructure and viscoelasticity through chemical modifications to the polymer backbone. These materials are expected to be useful for applications that require injection, spraying, and control over cargo release kinetics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据