4.8 Article

Producing high-performing silicon anodes by tailoring ionic liquids as electrolytes

期刊

ENERGY STORAGE MATERIALS
卷 25, 期 -, 页码 477-486

出版社

ELSEVIER
DOI: 10.1016/j.ensm.2019.09.035

关键词

Ionic liquids; Silicon anodes; Lithium-ion batteries; Solid electrolyte interphase

资金

  1. FAPESP [2014/01987-6, 2015/11164-0, 15/26308-7]
  2. Natural Sciences and Engineering Research Council of Canada (NSERC)
  3. CNPq [153297/2018-2]

向作者/读者索取更多资源

Nanostructured silicon is a promising anode for the next generation of high-energy lithium ion batteries. The challenge for implementation of Si anode is the control of the continuous chemical reactivity at the electrode/electrolyte interface during lithiation and delithiation. Given their relevant physicochemical properties such as high stability, good transport properties and nonvolatility, ionic liquids can potentially alleviate the instability of the solid electrolyte interface layer due to the large volume changes of Si upon cycling. Since the properties of ionic liquids are modulated by the anion and cation, or both, a suitable selection must be made for each application. Here, we report the electrochemical performance of triethyl-n-pentylphosphonium bis(fluorosulfonyl) imide [P-2225] [FSI] and bis(fluorosulfonyl)imide N-methyl-N-butylpyrrolidinium [BMPYR] [FSI] ionic liquids as electrolyte solvents for silicon/poly(acrylonitrile), Si/PAN, composite electrode. After 1000 charge/discharge cycles, these composite anode-ionic liquid systems exhibit a specific delithiation capacity of approximately 1000 mAh.g(-1) at 1.0 A.g(-1) with a Coulombic efficiency approaching 100%. This demonstrates the superior performance of ionic liquids compared to classical organic alkyl carbonate solvent-based electrolytes and that are also the best among the reported state-of-the art ILs for silicon electrodes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据