4.6 Article

Sacrificial microgel-laden bioink-enabled 3D bioprinting of mesoscale pore networks

期刊

BIO-DESIGN AND MANUFACTURING
卷 3, 期 1, 页码 30-39

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s42242-020-00062-y

关键词

Sacrificial microgel; Gelatin methacryloyl (GelMA); 3D bioprinting; Mesoscale pore networks (MPNs); Tissue engineering

资金

  1. National Nature Science Foundation of China [U1609207, 81827804]

向作者/读者索取更多资源

Three-dimensional (3D) bioprinting is a powerful approach that enables the fabrication of 3D tissue constructs that retain complex biological functions. However, the dense hydrogel networks that form after the gelation of bioinks often restrict the migration and proliferation of encapsulated cells. Herein, a sacrificial microgel-laden bioink strategy was designed for directly bioprinting constructs with mesoscale pore networks (MPNs) for enhancing nutrient delivery and cell growth. The sacrificial microgel-laden bioink, which contains cell/gelatin methacryloyl (GelMA) mixture and gelled gelatin microgel, is first thermo-crosslinked to fabricate temporary predesigned cell-laden constructs by extrusion bioprinting onto a cold platform. Then, the construct is permanently stabilized through photo-crosslinking of GelMA. The MPNs inside the printed constructs are formed after subsequent dissolution of the gelatin microgel. These MPNs allowed for effective oxygen/nutrient diffusion, facilitating the generation of bioactive tissues. Specifically, osteoblast and human umbilical vein endothelial cells encapsulated in the bioprinted large-scale constructs (>= 1 cm) with MPNs showed enhanced bioactivity during culture. The 3D bioprinting strategy based on the sacrificial microgel-laden bioink provided a facile method to facilitate formation of complex tissue constructs with MPNs and set a foundation for future optimization of MPN-based tissue constructs with applications in diverse areas of tissue engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据