4.6 Article

An electrochemical immunosensor based on a combined amplification strategy with the GO-CS/CeO2-CS nanocomposite for the detection of aflatoxin M1

期刊

NEW JOURNAL OF CHEMISTRY
卷 44, 期 4, 页码 1362-1370

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9nj04804a

关键词

-

资金

  1. Shandong Provincial Natural Science Foundation [ZR2019MC063, 2018ZBXC323]

向作者/读者索取更多资源

In this paper, a sensitive electrochemical immunosensor modified with graphene oxide-chitosan (GO-CS) and cerium oxide-chitosan (CeO2-CS) using screen-printed electrodes (SPEs) was developed for the determination of aflatoxin M-1 (AFM(1)) in milk. Compared with other electrodes, SPEs are easy for quick detection and no polishing steps are required. Graphene oxide (GO) has strong electrical conductivity and a large specific surface area, which can accelerate the transfer of electrons and fix more anti-AFM(1) antibodies (ab-AFM(1)) on SPEs. Compared with GO, cerium oxide (CeO2) nanoparticles have a smaller diameter, and CeO2 can be uniformly attached to the surface of the GO. Simultaneously, CeO2 has good redox properties and can further accelerate the transfer of electrons, thereby further amplifying the electrochemical signal of the sensor. Chitosan (CS) has strong complexation ability, which can uniformly disperse GO and CeO2. Herein, GO-CS and CeO2-CS gradually modified SPEs to improve their electrochemical response and immobilize more antibodies. The properties of the AFM(1) immunosensor were studied via differential pulse voltammetry (DPV) and cyclic voltammetry (CV). Under the optimal conditions, the immunosensor showed great reproducibility and high stability with a detection limit of 0.009 mu g L-1. In addition, the immunosensor was successfully utilized for the determination of AFM(1) in milk. This immunosensing principle will have broad prospects for the analysis of toxins in food, ensuring the safety of milk and dairy products.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据