4.7 Article

Improved Differentiation of Streptococcus pneumoniae and Other S. mitis Group Streptococci by MALDI Biotyper Using an Improved MALDI Biotyper Database Content and a Novel Result Interpretation Algorithm

期刊

JOURNAL OF CLINICAL MICROBIOLOGY
卷 55, 期 3, 页码 914-922

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JCM.01990-16

关键词

MALDI-TOF; Streptococcus pneumoniae; algorithm; mitis group streptococci; phenotypic identification; pneumococcus

资金

  1. Research Fund of Hospital District of Southwest Finland
  2. American Society for Microbiology
  3. University of Helsinki

向作者/读者索取更多资源

Reliable distinction of Streptococcus pneumoniae and viridans group streptococci is important because of the different pathogenic properties of these organisms. Differentiation between S. pneumoniae and closely related Sreptococcus mitis species group streptococci has always been challenging, even when using such modern methods as 16S rRNA gene sequencing or matrix-assisted laser desorption ionization- time of flight (MALDI-TOF) mass spectrometry. In this study, a novel algorithm combined with an enhanced database was evaluated for differentiation between S. pneumoniae and S. mitis species group streptococci. One hundred one clinical S. mitis species group streptococcal strains and 188 clinical S. pneumoniae strains were identified by both the standard MALDI Biotyper database alone and that combined with a novel algorithm. The database update from 4,613 strains to 5,627 strains drastically improved the differentiation of S. pneumoniae and S. mitis species group streptococci: when the new database version containing 5,627 strains was used, only one of the 101 S. mitis species group isolates was misidentified as S. pneumoniae, whereas 66 of them were misidentified as S. pneumoniae when the earlier 4,613-strain MALDI Biotyper database version was used. The updated MALDI Biotyper database combined with the novel algorithm showed even better performance, producing no misidentifications of the S. mitis species group strains as S. pneumoniae. All S. pneumoniae strains were correctly identified as S. pneumoniae with both the standard MALDI Biotyper database and the standard MALDI Biotyper database combined with the novel algorithm. This new algorithm thus enables reliable differentiation between pneumococci and other S. mitis species group streptococci with the MALDI Biotyper.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据