4.2 Article

Origin of the slow growth of entanglement entropy in long-range interacting spin systems

期刊

PHYSICAL REVIEW RESEARCH
卷 2, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.2.012041

关键词

-

向作者/读者索取更多资源

Long-range interactions allow far-distance quantum correlations to build up very fast. Nevertheless, numerical simulations demonstrated a dramatic slowdown of entanglement entropy growth after a sudden quench. In this work, we unveil the general mechanism underlying this counterintuitive phenomenon for d-dimensional quantum spin systems with slowly decaying interactions. We demonstrate that the semiclassical rate of collective spin squeezing governs the dynamics of entanglement, leading to a universal logarithmic growth in the absence of semiclassical chaos. In fact, the standard quasiparticle contribution is shown to get suppressed as the interaction range is sufficiently increased. All our analytical results agree with numerical computations for quantum Ising chains with long-range couplings. Our findings thus identify a qualitative change in the entanglement production induced by long-range interactions, and they are experimentally relevant for accessing entanglement in highly controllable platforms, including trapped ions, atomic condensates, and cavity-QED systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据