4.6 Article

Scaling of a catalytic cracking fluidized bed downer reactor based on computational fluid dynamics simulations

期刊

RSC ADVANCES
卷 10, 期 5, 页码 2897-2914

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ra10080f

关键词

-

资金

  1. King Mongkut's University of Technology North Bangkok [KMUTNB-61-GOV-B31]

向作者/读者索取更多资源

Circulating fluidized bed downer reactors (downer reactors) exhibit good heat and mass transfer, and the flow behavior approaches the ideal plug flow. This reactor is superior for catalytic cracking reactions in which the intermediate is the desired product. However, the hydrodynamic behavior and reactor performance have mostly been investigated in small-scale or laboratory-scale reactors. The objective of this study was to investigate the up-scaling of the catalytic cracking of heavy oil in three downer reactors with heights of 5, 15, and 30 m, using computational fluid dynamics simulations. A two-fluid model with the kinetic theory of granular flow was used to predict the hydrodynamics and performance of the chemical reactions. The kinetics of catalytic cracking of heavy oil were described by a 4-lump kinetic model. The chemical performance similarity was identified by using radial and axial distributions of heavy oil conversion, gasoline mass fraction, and gasoline selectivity. The chemical performance similarity cannot be achieved by using the hydrodynamic similarity parameter . A modified up-scaling parameter was proposed, . The chemical performance similarity of identical catalytic cracking downer reactors can be achieved with deviation in the range of +/- 10% and mean relative absolute error of less than 5%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据