4.2 Article

Teleportation-based collective attacks in Gaussian quantum key distribution

期刊

PHYSICAL REVIEW RESEARCH
卷 2, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.2.013208

关键词

-

资金

  1. Australian Department of Defence
  2. Australian Research Council (ARC) under the Centre of Excellence for Quantum Computation and Communication Technology [CE170100012]
  3. European Union's Horizon 2020 Research and Innovation Programme under Marie Sklodowska-Curie Grant [750905]
  4. Q.Link.X from the German Federal Ministry of Education and Research (BMBF)
  5. Marie Curie Actions (MSCA) [750905] Funding Source: Marie Curie Actions (MSCA)

向作者/读者索取更多资源

In Gaussian quantum key distribution eavesdropping attacks are conventionally modeled through the universal entangling cloner scheme, which is based on the premise that the whole environment is under control of the adversary, i.e., the eavesdropper purifies the system. This assumption implies that the eavesdropper has either access to an identity (noiseless) channel or an infinite amount of entanglement in order to simulate such an identity channel. In this work we challenge the necessity of this assumption and we propose a teleportation-based eavesdropping attack, where the eavesdropper is not assumed to have access to the shared channel, that represents the unavoidable noise due to the environment. Under collective measurements, this attack reaches optimality in the limit of an infinite amount of entanglement, while for finite entanglement resources it outperforms the corresponding optimal individual attack. We also calculate the minimum amount of distributed entanglement that is necessary for this eavesdropping scheme, since we consider it as the operationally critical quantity capturing the limitations of a realistic attack. We conclude that the fact that an infinite amount of entanglement is required for an optimal collective eavesdropping attack signifies the robustness of Gaussian quantum key distribution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据