4.7 Article

Effect direction meta-analysis of GWAS identifies extreme, prevalent and shared pleiotropy in a large mammal

期刊

COMMUNICATIONS BIOLOGY
卷 3, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s42003-020-0823-6

关键词

-

资金

  1. Australian Research Council [DP160101056]
  2. DairyBio
  3. Center for Genomic Selection in Animals and Plants (GenSAP) - Innovation Fund Denmark [0603-00519B]

向作者/读者索取更多资源

In genome-wide association studies (GWAS), variants showing consistent effect directions across populations are considered as true discoveries. We model this information in an Effect Direction MEta-analysis (EDME) to quantify pleiotropy using GWAS of 34 Cholesky-decorrelated traits in 44,000+ cattle with sequence variants. The effect-direction agreement between independent bull and cow datasets was used to quantify the false discovery rate by effect direction (FDRed) and the number of affected traits for prioritised variants. Variants with multi-trait p < 1e-6 affected 1 similar to 22 traits with an average of 10 traits. EDME assigns pleiotropic variants to each trait which informs the biology behind complex traits. New pleiotropic loci are identified, including signals from the cattle FTO locus mirroring its bystander effects on human obesity. When validated in the 1000-Bull Genome database, the prioritized pleiotropic variants consistently predicted expected phenotypic differences between dairy and beef cattle. EDME provides robust approaches to control GWAS FDR and quantify pleiotropy. Xiang et al. developed an Effect Direction Meta-analysis (EDME) approach to identify true pleiotropy. They used Cholesky-transformation to decorrelate the traits and identified many pleiotropic variants that consistently predicted phenotypic differences in cattle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据