4.5 Article

An Improved Whale Optimization Algorithm for Feature Selection

期刊

CMC-COMPUTERS MATERIALS & CONTINUA
卷 62, 期 1, 页码 337-354

出版社

TECH SCIENCE PRESS
DOI: 10.32604/cmc.2020.06411

关键词

Whale optimization algorithm; Filter and Wrapper model; K-nearest neighbor method; Adaptive neighborhood; hybrid mutation

资金

  1. National Natural Science Foundation of China [2017YFC0403605, 11601419]

向作者/读者索取更多资源

Whale optimization algorithm (WOA) is a new population-based metaheuristic algorithm. WOA uses shrinking encircling mechanism, spiral rise, and random learning strategies to update whale's positions. WOA has merit in terms of simple calculation and high computational accuracy, but its convergence speed is slow and it is easy to fall into the local optimal solution. In order to overcome the shortcomings, this paper integrates adaptive neighborhood and hybrid mutation strategies into whale optimization algorithms, designs the average distance from itself to other whales as an adaptive neighborhood radius, and chooses to learn from the optimal solution in the neighborhood instead of random learning strategies. The hybrid mutation strategy is used to enhance the ability of algorithm to jump out of the local optimal solution. A new whale optimization algorithm (HMNWOA) is proposed. The proposed algorithm inherits the global search capability of the original algorithm, enhances the exploitation ability, improves the quality of the population, and thus improves the convergence speed of the algorithm. A feature selection algorithm based on binary HMNWOA is proposed. Twelve standard datasets from UCI repository test the validity of the proposed algorithm for feature selection. The experimental results show that HMNWOA is very competitive compared to the other six popular feature selection methods in improving the classification accuracy and reducing the number of features, and ensures that HMNWOA has strong search ability in the search feature space.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据