4.7 Article

Assessment of greenhouse gases (GHG) emissions from the tallow biodiesel production chain including land use change (LUC)

期刊

JOURNAL OF CLEANER PRODUCTION
卷 151, 期 -, 页码 578-591

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2017.03.063

关键词

Tallow biodiesel; Life cycle assessment; Inventory allocation; Land use change; Greenhouse gases emissions; Livestock

资金

  1. CNPq [404778/2013-5]
  2. ANP
  3. CAPES

向作者/读者索取更多资源

Economic uncertainties and environmental constraints regarding fossil fuels have encouraged initiatives for renewable energy sources and assessment of their life cycle impacts. Brazil ranks second worldwide in biodiesel production, despite the relatively recent organization of its national chain, marked by the creation of the National Program for Biodiesel Production and Use (PNPB). The Central-West region is responsible for the largest share of biodiesel production (44.4%) and the largest cattle slaughter (37.5%). In this scenario, beef tallow has great potential for expansion of biodiesel production, since it is a byproduct of the chain that, when not properly disposed, presents a considerable environmental burden. This work presents a method for assessing environmental performance that integrates life cycle assessment (LCA) with land use change (LUC) for analysis of the tallow biodiesel production chain. The results are given in terms of increment in annual greenhouse gases (GHG) emissions per hectare related to local tallow biodiesel. The system's boundary covers a representative major cattle farming area in Central-West Brazil. For the LCA segment of the method, five inventory allocations were considered: (i) without allocation, (ii) mass, (iii) market value, (iv) energy and (v) an average allocation, calculated as the mean of mass, market value and energy. The last one is a novel approach proposed in this work, aggregating all the others, which separately result in under or over estimation of impacts. Using the average allocation, the increment in annual GHG emission per hectare from tallow biodiesel production, is 43.2 kg CO(2)eq ha(-1) y(-1). This value is 17% less than the emission increment due to soybean biodiesel (50.2 kg CO(2)eq ha(-1) y(-1)). LUC is responsible for 96% of the emission assessed, which demonstrates the importance of including LUC assessment in life cycle assessment of tallow biodiesel. According to the sensitivity analyses performed, changes from crop to pasture have superior environmental performance among the investigated options. Land use management is essential to preserve the remaining natural areas, making tallow biodiesel more sustainable. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据