4.6 Article

A Hierarchy of Anyon Models Realised by Twists in Stacked Surface Codes

期刊

QUANTUM
卷 4, 期 -, 页码 -

出版社

VEREIN FORDERUNG OPEN ACCESS PUBLIZIERENS QUANTENWISSENSCHAF
DOI: 10.22331/q-2020-04-06-251

关键词

-

资金

  1. University College London
  2. Engineering and Physical Sciences Research Council [EP/L015242/1]
  3. Engineering and Physical Sciences Research Council QCDA project [EP/R043647/1]
  4. EPSRC [EP/R043647/1] Funding Source: UKRI

向作者/读者索取更多资源

Braiding defects in topological stabiliser codes can be used to fault-tolerantly implement logical operations. Twists are defects corresponding to the end-points of domain walls and are associated with symmetries of the anyon model of the code. We consider twists in multiple copies of the 2d surface code and identify necessary and sufficient conditions for considering these twists as anyons: namely that they must be self-inverse and that all charges which can be localised by the twist must be invariant under its associated symmetry. If both of these conditions are satisfied the twist and its set of localisable anyonic charges reproduce the behaviour of an anyonic model belonging to a hierarchy which generalises the Ising anyons. We show that the braiding of these twists results in either (tensor products of) the S gate or (tensor products of) the CZ gate. We also show that for any number of copies of the 2d surface code the application of H gates within a copy and CNOT gates between copies is sufficient to generate all possible twists.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据