4.6 Article

Influence of natural organic matter on the extraction efficiency of flame retardants from surface waters

期刊

JOURNAL OF CHROMATOGRAPHY A
卷 1524, 期 -, 页码 74-86

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.chroma.2017.10.004

关键词

Flame retardant; Solid-phase extraction; Natural organic matter; Gas chromatography; Mass spectrometry

资金

  1. Swedish Research Council FORMAS [216-2011-427]
  2. foundation Oscar och Lili Lamms Minne

向作者/读者索取更多资源

The influence of natural organic matter (NOM) on the solid-phase extraction (SPE) efficiency was investigated for legacy and emerging flame retardants (FRs; n =26) in surface water. Three different groups of FRs were analyzed: polybrominated diphenyl ethers (PBDEs), halogenated flame retardants (HFRs), and organophosphorus flame retardants (OPFRs). In addition, five sorbents (Amberlite XAD-2, Amberlite IRA-743, Oasis HLB, Chromabond HR-P, and Chromabond HR-X) were evaluated for the extraction of FRs (n=33) in water, of which Oasis HLB eluted with dichloromethane and acetone:n-hexane (1:1, v/v) provided the highest overall recoveries. In subsequent NOM experiments, where FRs were extracted from water containing different NOM concentrations, both increased and decreased extraction efficiency with increasing NOM level were observed. Physicochemical and semi-empirical quantum chemistry properties were calculated for the FRs and used for analyzing relations between FRs. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) showed that the FRs separated into four different groups based on their properties. The FRs within each group responded similarly to increasing NOM, while differences in behavior were observed between the groups. This suggests that the structural properties of micropollutants highly influence NOM-FR interaction mechanisms. For instance, at high NOM levels, recoveries decreased substantially for FRs containing a moiety that can form strong hydrogen bonds (such as the double-bonded oxygen in e.g., OPFRs). Many of the compounds showed maximum extraction efficiency at higher levels of NOM. This suggests that binding of NOM to the sorbent and subsequent interaction between sorbent-bound NOM and FRs is an important mechanism for extraction of micropollutants from surface waters. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据