4.6 Article

Anisotropic lattice compression and pressure-induced electronic phase transitions in Sr2IrO4

期刊

PHYSICAL REVIEW B
卷 101, 期 7, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.101.075121

关键词

-

资金

  1. Fapesp [2016/00756-6, 2017/10581-1, 2018/20142-8]
  2. CNPq, Brazil [308607/2018-0, 409504/2018-1]

向作者/读者索取更多资源

The crystal lattice of Sr2IrO4 is investigated with synchrotron x-ray powder diffraction under hydrostatic pressures up to P = 43 GPa and temperatures down to 20 K. The tetragonal unit cell is maintained over the whole investigated pressure range, within our resolution and sensitivity. The c-axis compressibility kappa(c)(P, T) -(1/c)(dc/dP) presents an anomaly with pressure at P-1 = 17 GPa at fixed T = 20 K that is not observed at T = 300 K, whereas kappa(a)(P, T) is nearly temperature independent and shows a linear behavior with P. The anomaly in kappa(c)(P, T) is associated with the onset of long-range magnetic order, as evidenced by an analysis of the temperature dependence of the lattice parameters at fixed P = 13.7 +/- 0.5 GPa. At fixed T = 20 K, the tetragonal elongation c/a(P, T) shows a gradual increment with pressure and a depletion above P-2 = 30 GPa that indicates an orbital transition and possibly marks the collapse of the J(eff) = 1/2 spin-orbit-entangled state. Our results support pressure-induced phase transitions or crossovers between electronic ground states that are sensed, and therefore can be probed, by the crystal lattice at low temperatures in this prototype spin-orbit Mott insulator.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据