4.7 Article

Empirical D3 Dispersion as a Replacement for ab lnitio Dispersion Terms in Density Functional Theory-Based Symmetry-Adapted Perturbation Theory

期刊

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
卷 13, 期 4, 页码 1638-1646

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.6b01198

关键词

-

资金

  1. Czech Science Foundation [P208/16-11321Y]
  2. Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic [RVO 61388963]

向作者/读者索取更多资源

In density functional theory-based symmetry-adapted perturbation theory (DFT-SAPT) interaction energy calculations, the most demanding step is the calculation of the London dispersion term. For this bottleneck to be avoided and DFT-SAPT to be made applicable to larger systems, the ab initio dispersion terms can be replaced by one calculated empirically at an almost negligible cost (J Phys. Chem. A 2011; 115, 11321-11330). We present an update of this approach that improves accuracy and makes the method applicable to a wider range of systems. It is based on Grimme's D3 dispersion correction for DFT, where the damping function is changed to one suitable for the calculation of the complete dispersion energy. The best results have been achieved with the Tang-Toennies damping function. It has been parametrized on the S66X8 data set for which we report density fitting DFT-SAPT/aug-cc-pVTZ interaction energy decomposition. The method has been validated on a diverse set of noncovalent systems including difficult cases such as very compact noncovalent complexes of charge-transfer type. The root-mean-square errors in the complete test set are 0.73 and 0.42 kcal mol(-1) when charge-transfer complexes are excluded. The proposed empirical dispersion terms can also be used outside the DFT-SAPT framework, e.g., for the estimation of the amount of dispersion in a calculation where only the total interaction energy is known.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据