4.4 Review

Current Directions in Deep Brain Stimulation for Parkinson's Disease-Directing Current to Maximize Clinical Benefit

期刊

NEUROLOGY AND THERAPY
卷 9, 期 1, 页码 25-41

出版社

SPRINGER LONDON LTD
DOI: 10.1007/s40120-020-00181-9

关键词

Contact; Deep brain stimulation; Directionality; Lead; Parkinson disease; Programming

资金

  1. NIH [KL2 TR001426, NCATS KL2 TR002539, NINDS K23 NS114178, R01 NS40902]
  2. Lundbeck
  3. AbbVie
  4. Lusofarmaco
  5. Chiesi Farmaceutici
  6. Medtronic
  7. UCB Pharma
  8. Boston Scientific
  9. Abbott
  10. Cummings Foundation
  11. Dystonia Medical Research Foundation Canada
  12. Michael J. Fox Foundation
  13. University of Toronto
  14. Neuroderm
  15. Biogen Inc
  16. Prilenia therapeutics

向作者/读者索取更多资源

Several single-center studies and one large multicenter clinical trial demonstrated that directional deep brain stimulation (DBS) could optimize the volume of tissue activated (VTA) based on the individual placement of the lead in relation to the target. The ability to generate axially asymmetric fields of stimulation translates into a broader therapeutic window (TW) compared to conventional DBS. However, changing the shape and surface of stimulating electrodes (directional segmented vs. conventional ring-shaped) also demands a revision of the programming strategies employed for DBS programming. Model-based approaches have been used to predict the shape of the VTA, which can be visualized on standardized neuroimaging atlases or individual magnetic resonance imaging. While potentially useful for optimizing clinical care, these systems remain limited by factors such as patient-specific anatomical variability, postsurgical lead migrations, and inability to account for individual contact impedances and orientation of the systems of fibers surrounding the electrode. Alternative programming tools based on the functional assessment of stimulation-induced clinical benefits and side effects allow one to collect and analyze data from each electrode of the DBS system and provide an action plan of ranked alternatives for therapeutic settings based on the selection of optimal directional contacts. Overall, an increasing amount of data supports the use of directional DBS. It is conceivable that the use of directionality may reduce the need for complex programming paradigms such as bipolar configurations, frequency or pulse width modulation, or interleaving. At a minimum, stimulation through directional electrodes can be considered as another tool to improve the benefit/side effect ratio. At a maximum, directionality may become the preferred way to program because of its larger TW and lower energy consumption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据