4.7 Article

Zintl layer formation during perovskite atomic layer deposition on Ge (001)

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 146, 期 5, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4972071

关键词

-

资金

  1. National Science Foundation [CMMI-1437050]
  2. Air Force Office of Scientific Research [FA9550-14-1-0090]
  3. Div Of Civil, Mechanical, & Manufact Inn
  4. Directorate For Engineering [1437050] Funding Source: National Science Foundation

向作者/读者索取更多资源

Using in situ X-ray photoelectron spectroscopy, reflection high-energy electron diffraction, and density functional theory, we analyzed the surface core level shifts and surface structure during the initial growth of ABO(3) perovskites on Ge (001) by atomic layer deposition, where A = Ba, Sr and B = Ti, Hf, Zr. We find that the initial dosing of the barium- or strontium-bis(triisopropylcyclopentadienyl) precursors on a clean Ge surface produces a surface phase that has the same chemical and structural properties as the 0.5-monolayer Ba Zintl layer formed when depositing Ba by molecular beam epitaxy. Similar binding energy shifts are found for Ba, Sr, and Ge when using either chemical or elemental metal sources. The observed germanium surface core level shifts are consistent with the flattening of the initially tilted Ge surface dimers using both molecular and atomic metal sources. Similar binding energy shifts and changes in dimer tilting with alkaline earth metal adsorption are found with density functional theory calculations. High angle angular dark field scanning transmission microscopy images of BaTiO3, SrZrO3, SrHfO3, and SrHf0.55Ti0.45O3 reveal the location of the Ba (or Sr) atomic columns between the Ge dimers. The results imply that the organic ligands dissociate from the precursor after precursor adsorption on the Ge surface, producing the same Zintl template critical for perovskite growth on Group IV semiconductors during molecular beam epitaxy. Published by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据