4.7 Article

Development of reactive force fields using ab initio molecular dynamics simulation minimally biased to experimental data

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 147, 期 16, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4985903

关键词

-

资金

  1. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences, and Biosciences [DE-SC0005418]
  2. National Natural Science Foundation of China [21303123, 21303124]
  3. China Scholarship Council [201306275019]
  4. U.S. Department of Energy (DOE) [DE-SC0005418] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

Incorporation of quantum mechanical electronic structure data is necessary to properly capture the physics of many chemical processes. Proton hopping in water, which involves rearrangement of chemical and hydrogen bonds, is one such example of an inherently quantum mechanical process. Standard ab initio molecular dynamics (AIMD) methods, however, do not yet accurately predict the structure of water and are therefore less than optimal for developing force fields. We have instead utilized a recently developed method which minimally biases AIMD simulations to match limited experimental data to develop novel multiscale reactive molecular dynamics (MS-RMD) force fields by using relative entropy minimization. In this paper, we present two new MS-RMD models using such a parameterization: one which employs water with harmonic internal vibrations and another which uses anharmonic water. We show that the newly developed MS-RMD models very closely reproduce the solvation structure of the hydrated excess proton in the target AIMD data. We also find that the use of anharmonic water increases proton hopping, thereby increasing the proton diffusion constant. Published by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据